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Abstract 31 

 This study examines the evolution of several model-based and satellite-derived 32 

drought metrics sensitive to soil moisture and vegetation conditions during the extreme 33 

flash drought event that impacted major agricultural areas across the central U.S. during 34 

2012.  Standardized anomalies from the remote sensing based Evaporative Stress Index 35 

(ESI) and Vegetation Drought Response Index (VegDRI) and soil moisture anomalies 36 

from the North American Land Data Assimilation System (NLDAS) are compared to the 37 

United States Drought Monitor (USDM), surface meteorological conditions, and crop and 38 

soil moisture data compiled by the National Agricultural Statistics Service (NASS). 39 

 Overall, the results show that rapid decreases in the ESI and NLDAS anomalies 40 

often preceded drought intensification in the USDM by up to 6 weeks depending on the 41 

region.  Decreases in the ESI tended to occur up to several weeks before deteriorations 42 

were observed in the crop condition datasets.  The NLDAS soil moisture anomalies were 43 

similar to those depicted in the NASS soil moisture datasets; however, some differences 44 

were noted in how each model responded to the changing drought conditions.  The 45 

VegDRI anomalies tracked the evolution of the USDM drought depiction in regions with 46 

slow drought development, but lagged the USDM and other drought indicators when 47 

conditions were changing rapidly.  Comparison to the crop condition datasets revealed 48 

that soybean conditions were most similar to ESI anomalies computed over short time 49 

periods (2-4 weeks), whereas corn conditions were more closely related to longer-range 50 

(8-12 week) ESI anomalies.  Crop yield departures were consistent with the drought 51 

severity depicted by the ESI and to a lesser extent by the NLDAS and VegDRI datasets. 52 

 53 
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 56 

1. Introduction 57 

 The 2012 drought that impacted major agricultural areas across the central U.S. 58 

was the worst drought to affect this region since 1988 and had similar magnitude and 59 

spatial extent to the severe droughts that occurred during the 1930s and 1950s (Hoerling 60 

et al. 2014).  The almost complete absence of heavy rainfall events during the growing 61 

season, combined with record high temperatures, strong winds, and abundant sunshine, 62 

led to rapid decreases in soil moisture content and the rapid emergence of flash drought 63 

conditions (Lydolph 1964; Mozny et al. 2012; Otkin et al. 2013; Mo and Lettenmeier 64 

2015).  According to the U.S. Drought Monitor (USDM; Svoboda et al. 2002), drought 65 

coverage and intensity rapidly increased during June and July in response to the 66 

anomalous weather conditions, with nearly 80% of the contiguous U.S. characterized by 67 

at least abnormally dry conditions by the end of summer.  Most of the central U.S., 68 

including the Corn Belt, experienced severe drought (or worse) conditions at some point 69 

during the growing season (Mallya et al. 2013).  Recent modeling studies have shown 70 

that this exceptional drought event was not forced by tropical sea surface temperature 71 

anomalies.  Instead, it was associated with natural variations in the weather that led to the 72 

development of a persistent upper-tropospheric ridge that inhibited convection and 73 

caused exceptionally warm temperatures to occur across the region for several months 74 

(Kumar et al. 2013; Wang et al. 2014; Hoerling et al. 2014; Diffenbaugh and Scherer 75 

2013). 76 
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 The 2012 drought was one of the most expensive natural disasters in U.S. history 77 

with Federal crop indemnity payments alone exceeding $17 billion (USDA 2013).  Crop 78 

losses were especially large because the most severe drought conditions occurred during 79 

critical stages of crop development, such as pollination in corn and the grain filling stage 80 

in soybeans.  Prior work has shown that even short periods (e.g. several days) of intense 81 

water stress can result in large crop yield reductions (e.g., Meyer et al. 1993; Saini and 82 

Westgate 1999; Calvino et al. 2003; Earl and Davis 2003; Barnabas et al. 2008; Mishra 83 

and Cherkauer 2010; Prasad et al. 2011; Kebede et al. 2012; Hunt et al. 2014).  In 2012, 84 

however, severe moisture and heat stress lasted for more than a month across most major 85 

agricultural areas of the country, thereby leading to the lowest corn yields since 1995.  If 86 

long-term yield trends are accounted for, the percentage yield loss was one of the largest 87 

on record going back to 1866 (Hoerling et al. 2014; Boyer et al. 2013).  The large yield 88 

loss is consistent with a recent study by Lobell et al. (2014) that assessed yield trends 89 

during recent decades for different levels of moisture stress.  Their analysis showed that 90 

yield gains have been smallest on a percentage basis for growing seasons in which large 91 

vapor pressure deficits indicative of severe drought conditions occur during critical crop 92 

yield development stages.  As drought conditions spread westward during the summer, 93 

ranchers also experienced substantial impacts through a combination of higher feed 94 

prices, a lack of high quality forage, and heat-related animal stress, with many ranchers 95 

forced to either sell or relocate their livestock to other parts of the country (USDA 2012).  96 

The rapid onset of severe drought conditions meant that farmers and ranchers had little 97 

time to prepare for its adverse effects.  It is possible, however, that greater use of drought 98 

indicators that respond quickly to changing conditions, such as the satellite-derived 99 
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Evaporative Stress Index (ESI; Anderson et al. 2007a,b), may promote drought mitigation 100 

efforts during future flash drought events by providing earlier warning of drought 101 

development (Otkin et al. 2014, 2015a, b). 102 

 High-resolution estimates of soil moisture and vegetation health conditions are 103 

necessary to accurately assess the severity and geographic extent of drought conditions at 104 

spatial and temporal scales sufficient for stakeholders to make informed management 105 

decisions.  Moreover, an accurate assessment of current conditions is a prerequisite for 106 

producing useful drought intensification forecasts over monthly to seasonal time scales. 107 

In this paper, the evolution of several drought indicators sensitive to vegetation health 108 

and soil moisture conditions will be examined during the onset and development of the 109 

2012 flash drought.  These indicators include the ESI, which uses satellite thermal 110 

infrared observations and a land surface energy balance model to estimate anomalies in 111 

evapotranspiration (ET) and the Vegetation Drought Response Index (VegDRI; Brown et 112 

al. 2008) that uses satellite, land, and climate observations to assess vegetation health 113 

conditions.  The evolution of the satellite-derived datasets will be compared to modeled 114 

soil moisture anomalies from the North American Land Data Assimilation System 115 

(NLDAS; Xia, et al. 2012a,b; 2014) and to time series of precipitation and meteorological 116 

conditions.  The accuracy of these datasets will be assessed for different locations and 117 

time periods through comparison with USDM drought analyses and county-level crop 118 

and range condition datasets compiled by the United States Department of Agriculture 119 

(USDA) National Agricultural Statistics Service (NASS).  Though the NASS datasets are 120 

qualitative, they provide very valuable ground truth of the actual impact of the drought on 121 

agriculture.  Each of these datasets is described in Section 2.  The overall evolution of the 122 
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drought and relationships between the drought indicators and crop conditions and yield 123 

are assessed in Section 3, with conclusions presented in Section 4. 124 

 125 

2. Data and Methodology 126 

2.1. Evaporative Stress Index 127 

 The ESI depicts standardized anomalies in ET fraction (ET/ETref), where ET is 128 

the actual ET flux retrieved under clear-sky conditions and ETref is a reference ET flux 129 

based on a Penman-Monteith formulation (Allen et al. 1998).  Reference ET is used in 130 

this equation to minimize the impact of non-moisture related drivers of ET, such as the 131 

seasonal cycle in solar radiation, when assessing anomalies in ET.  Similarly, the use of 132 

clear-sky ET minimizes impacts of cloud cover on ET variability, again focusing on soil 133 

moisture drivers.  The Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et 134 

al. 1997, 2007a, 2011) is used to estimate the actual ET flux.  ALEXI uses a two-source 135 

energy balance model (Norman et al. 1995) and land surface temperature (LST) retrievals 136 

obtained from satellite thermal infrared imagery to compute sensible, latent, and ground 137 

heat fluxes for vegetated and bare soil components of the land surface.  The partitioning 138 

of the surface energy fluxes is accomplished using vegetation cover fraction estimates 139 

derived from the MODIS leaf area index product (Myneni et al. 2002).  The total surface 140 

energy budget is computed using the observed increase in LST from ~1.5 hr after local 141 

sunrise until 1.5 hr before local noon, with closure of the energy balance equations 142 

achieved using the McNaughton and Spriggs (1986) atmospheric boundary layer growth 143 

model.  Lower-tropospheric temperature profiles used by the boundary layer model are 144 

obtained from the Climate Forecast System Reanalysis dataset (Saha et al. 2010).  The 145 
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ALEXI model is run each day over the contiguous U.S. (CONUS) with 4-km horizontal 146 

grid spacing using LST retrievals and insolation estimates derived from the Geostationary 147 

Operational Environmental Satellite (GOES) imager. 148 

 While the ESI ideally includes only clear-sky retrievals of ET, incomplete cloud 149 

screening of the thermal infrared-derived LST inputs can add noise to the ET time series 150 

used in the index computation.  These errors are reduced using a temporal smoothing 151 

algorithm that identifies days with ET estimates that differ by more than one standard 152 

deviation from surrounding days within a 14 day moving window.  Anderson et al. 153 

(2013) have shown that this method effectively removes cloud-contaminated ET 154 

estimates because abrupt changes in daily ET are more likely to occur because of cloud 155 

effects on surface heating than to rapid changes in soil moisture content.  The remaining 156 

clear-sky ET estimates are then composited over longer time periods to achieve more 157 

complete domain coverage. 158 

 Standardized ET fraction anomalies, expressed as pseudo z-scores normalized to a 159 

mean of 0 and a standard deviation of 1, are computed each week using 2, 4, 8, and 12 160 

week composite periods.  The mean ET fraction and standard deviations for each 161 

composite period are computed at each grid point in the CONUS domain using data from 162 

2001-2014.  Standardized anomalies are computed as: 163 

ESI(w, y) =
v(w, y) − 1

ny
v(w, y)∑

σ (ω)
      (1) 164 

where the first term in the numerator is the composite ET fraction for week w and year y 165 

at a given grid point, the second term is the mean ET fraction for week w averaged over 166 

all years, and the denominator is the standard deviation.  By standardizing the anomalies, 167 
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this means that negative (positive) values depict below (above) average ET fluxes, which 168 

are typically associated with lower (higher) than average soil moisture content and poorer 169 

(better) than average vegetation health in the absence of other stressors such as disease. 170 

 171 

2.2. Vegetation Drought Response Index 172 

 VegDRI is an empirical method that combines satellite observations of vegetation 173 

health with climate data and other information about the land surface to identify regions 174 

containing drought stressed vegetation.  Two climate-based drought indices, including the 175 

Standardized Precipitation Index (SPI; McKee et al. 1993) computed over a 36-week 176 

time period and the self-calibrated Palmer Drought Severity Index (Wells et al. 2004) are 177 

used by VegDRI.  Normalized difference vegetation index data from the Advanced Very 178 

High Resolution Radiometer are used to calculate seasonal greenness and start of season 179 

metrics input into VegDRI.  Several static biophysical variables describing environmental 180 

characteristics that influence drought stress on vegetation, such as land use/land cover, 181 

soil available water holding capacity, ecoregion type, and irrigation, are also included in 182 

the model.  A classification and regression tree analysis is then applied to the historical 183 

information in the database to empirically derive VegDRI analyses each week.  VegDRI 184 

output is typically displayed as discrete categories; however, because the underlying data 185 

are continuous, they were converted into standardized anomalies using data from 2000-186 

2012 to ease comparison with other datasets used in this study.  VegDRI data at 1-km 187 

native resolution were aggregated to the 4-km ESI grid.  A complete description of the 188 

VegDRI model can be found in Brown et al. (2008) and Tadesse et al. (2015). 189 

 190 
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2.3. North American Land Data Assimilation System 191 

 Modeled soil moisture anomalies were computed using data from several NLDAS 192 

models (Xia et al. 2012a,b), including the Noah (Ek et al. 2003; Barlage et al. 2010; Wei 193 

et al. 2013), Mosaic (Koster and Suarez, 1996), and Variable Infiltration Capacity (VIC; 194 

Liang et al. 1996) models.  Each land surface model simulates soil moisture content in 195 

multiple layers using energy and water balance equations.  Because the models differ in 196 

their treatment of key processes such as evaporation, drainage, vegetation rooting depth, 197 

and canopy uptake, their soil moisture responses can differ due to local climate, soil, and 198 

vegetation characteristics.  Daily soil moisture values from each model and the ensemble 199 

mean of all models (hereafter referred to as NMV_AVE) were interpolated from the 200 

0.125° resolution NLDAS grid to the 4-km ESI grid using a nearest neighbor approach.  201 

Soil moisture data in the topsoil (0-10 cm) and total column (0-200 cm) layers were 202 

averaged over 2- and 4-week periods, with standardized anomalies for each soil layer 203 

(hereafter referred to as TS and TC, respectively) computed at weekly intervals using 204 

data from 1979-2014.  The soil moisture response of each model will be compared to the 205 

ensemble mean and to the other drought indicators. 206 

 207 

2.4. North American Regional Reanalysis 208 

 The evolution of the near-surface atmospheric conditions was evaluated using 209 

NARR data (Mesinger et al. 2006).  Daily averages were computed for 10-m wind speed, 210 

2-m temperature, and 2-m dew point depression using analyses available every 3 hour on 211 

a 32-km resolution grid.  The daily averages were then interpolated to the ESI grid using 212 
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a nearest neighbor approach, with standardized anomalies for 1-week periods computed 213 

at weekly intervals using data from 2000-2014. 214 

 215 

2.5. Precipitation datasets 216 

 Gridded daily precipitation for 1948-2014 obtained from the Climate Prediction 217 

Center’s (CPC) 0.25° resolution precipitation analysis (Higgins et al. 2000) was 218 

interpolated to the ESI grid using a nearest neighbor approach and then summed at 219 

weekly intervals to create 1-, 4-, 8-, and 12-wk accumulated precipitation amounts.  SPI 220 

values for 4-, 8-, and 12-wk periods were subsequently computed.  The SPI is a 221 

standardized variable widely used to identify meteorological drought conditions, with 222 

values less (greater) than zero indicating the observed precipitation was less (more) than 223 

the climatological median precipitation for a given length of time and time of year. 224 

 225 

2.6. United States Drought Monitor 226 

 The USDM is a widely used drought analysis generated each week through expert 227 

synthesis of multiple data sources, including precipitation and soil moisture anomalies, 228 

surface stream flow departures, various drought metrics, crop and range conditions, and 229 

impact reports from local observers.   Because it conveys drought information at multiple 230 

time scales and for a wide range of impacts (including socioeconomic), the USDM 231 

should not be considered an absolute measure of drought severity.  By using a variety of 232 

data sources, most with high spatial resolution (sub-county), the USDM can depict both 233 

large-scale and localized areas of drought.  For this study, weekly USDM analyses in 234 

shapefile format were interpolated to the 4-km ALEXI grid by assigning numerical 235 
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values to each drought category, with abnormally dry (D0) = 0, moderate drought (D1) = 236 

1, severe drought (D2) = 2, extreme drought (D3) = 3, and exceptional drought (D4) = 4.  237 

When no drought conditions were present the value was set to -1. 238 

 239 

2.7. USDA crop and soil moisture datasets 240 

 The USDA NASS produces publically available state-level soil moisture and crop 241 

condition estimates each week from April-November based on survey data collected from 242 

~4000 local experts knowledgeable in visually identifying crop status and soil moisture 243 

conditions.  For this study, the author signed a confidentiality agreement with the USDA 244 

NASS to access county-level crop condition and soil moisture datasets, where the data 245 

were spatially smoothed to ensure that no individual records or confidential data were 246 

publically released.  Health condition estimates ranging from very poor to excellent are 247 

reported for pasture and range and for all major agricultural crops, including corn, 248 

soybeans, cotton, winter wheat, spring wheat, peanuts, barley, oats, and sorghum.  In 249 

addition, categorical topsoil and subsoil moisture assessments ranging from very short to 250 

surplus are made each week, with the former (latter) category indicating that the soil 251 

moisture content is much less (greater) than that required for normal crop development.  252 

Numerical values were then assigned to each crop condition (very poor, poor, fair, good, 253 

and excellent) and soil moisture (very short, short, adequate, and surplus) category, with 254 

average crop conditions computed for each county using all reports available during a 255 

given week.  These county level datasets were spatially smoothed using a 3x3 grid point 256 

square moving window after first being interpolated to the 4-km ESI grid.  Crop and soil 257 
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moisture anomalies were computed each week by subtracting the mean conditions from 258 

the 2002-2014 period of record. 259 

 The impact of the drought conditions on the end-of-season crop yield was also 260 

assessed using county level yield statistics compiled by NASS.  Corn, soybean, winter 261 

wheat, and spring wheat yields from 2000-2014 were obtained from the NASS Quick 262 

Stats database (http://quickstats.nass.usda.gov).  A least squares regression line was fit to 263 

the annual yield time series for each county and crop to account for local changes in yield 264 

over time, and then trend-adjusted yield departures were computed for each year. 265 

 266 

3. Results 267 

 268 

3.1. Large-scale drought analysis 269 

 This section examines the overall evolution of conditions across the U.S. during 270 

the 2012 drought event from drought onset during late spring through drought maturation 271 

during the summer and the northwestward progression of the core drought area during the 272 

fall.  Figures 1 and 2 show the evolution of the USDM, SPI_8WK, NMV_AVE topsoil 273 

moisture, NASS topsoil moisture and crop condition, ESI_4WK, and VegDRI datasets at 274 

monthly intervals from 07 April to 28 October.  The time period lengths for each variable 275 

were chosen to minimize differences in their response time to the anomalous conditions.  276 

For example, compared to the 8-wk SPI, a shorter 4-wk time period was used to compute 277 

the ESI and NMV_AVE anomalies because vegetation and soil moisture tend to respond 278 

to rainfall anomalies occurring over longer time periods.  The VegDRI data, however, 279 
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will represent drought on a slightly longer time scale due to its use of long-term climate 280 

variables such as the 36-week SPI. 281 

On 07 April, drought conditions were present across the southwestern and north-282 

central U.S. and along the East Coast, with the worst conditions located in Georgia and 283 

west Texas according to the USDM.  Overall, these drought areas were well captured by 284 

the NMV_AVE and ESI_4WK anomalies; however, there were some differences in their 285 

spatial extent and magnitude.  For example, negative ESI_4WK anomalies cover a much 286 

larger area of the northern U.S.  These negative ET anomalies developed in response to a 287 

prolonged period of record heat during March (Blunden and Arndt 2013) and indicate 288 

that the newly emerged vegetation became moisture stressed because their shallow roots 289 

were unable to access sufficient subsoil moisture once the top few cm of the soil profile 290 

became dry.  Thus, the ESI_4WK anomalies across this part of the country are indicative 291 

of short-term dryness at this time.  Their large spatial extent, however, is consistent with 292 

the widespread negative topsoil moisture anomalies reported in the NASS dataset.  The 293 

VegDRI analysis also depicts drought in many parts of the country, including the 294 

southwestern and southeastern U.S.; however, it does not depict drought over New 295 

Mexico and Texas or over New England because the vegetation signal is considered too 296 

weak at this time of the year.  297 

By 28 April, dry conditions were becoming more widespread across the eastern 298 

U.S. according to the SPI_8WK, NMV_AVE, and NASS soil moisture datasets; 299 

however, only minor changes were made to the USDM analysis.  The ESI_4WK dataset 300 

contains a large area of positive anomalies across the south-central U.S. within a region 301 

of above average rainfall.  These anomalies indicate that the vegetation was growing 302 
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rapidly in response to the favorable conditions, which is supported by the positive NASS 303 

crop condition anomalies.  The VegDRI dataset also contains positive anomalies across  304 

 305 

this part of the country; however, they are smaller than the ESI_4WK anomalies.  Across 306 

the north central U.S., the ESI_4WK anomalies had become less extreme, possibly 307 
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because the vegetation had developed a deeper root structure that could access more soil 308 

moisture and support higher ET rates.  Farther to the east, large precipitation deficits from 309 

Pennsylvania to southern New England led to the development of large topsoil moisture 310 

anomalies in the NMV_AVE dataset.  The ESI_4WK anomalies were near normal except 311 

for areas along the Atlantic Coast, whereas the VegDRI anomalies were mostly positive 312 

across the region. 313 

 By 02 June, large negative SPI_8WK anomalies had developed across most of the 314 

southern U.S., with especially large rainfall deficits located in the south central U.S.  The 315 

rapid transition from positive to negative anomalies is also evident in the ESI_4WK and 316 

NMV_AVE datasets, which now contain large negative anomalies across most of the 317 

central U.S.  The NASS datasets indicate that the topsoil moisture content and to a lesser 318 

extent the crop conditions were below average across most of the central U.S.  The worst 319 

soil moisture conditions were located in the mid-Mississippi River valley where some 320 

areas experienced up to a 2-category increase in drought severity during the previous five 321 

weeks according to the USDM.  Unlike the other datasets, the VegDRI anomalies mostly 322 

remained positive or only became slightly negative across the central U.S.  The delayed 323 

response of this metric to the rapidly worsening conditions likely results from its use of 324 

long-term climate variables such as the 36-wk SPI that change more slowly than fast 325 

response drought indicators such as the ESI. 326 

 Conditions continued to rapidly deteriorate across most of the central U.S. during 327 

June in response to the onset of very hot temperatures and the continuation of well below 328 

normal rainfall.  By 30 June, large negative NASS topsoil moisture anomalies extended 329 

from the central Rockies eastward across the entire Corn Belt.  Crop and range conditions 330 
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were also beginning to rapidly deteriorate as the vegetation was increasingly unable to 331 

cope with the adverse weather and soil moisture conditions.  Overall, the ESI_4WK and 332 

NMV_AVE datasets accurately represent the spatial extent of the drought; however, both 333 

depict more severe drought than the USDM in several locations.  This is consistent with 334 

prior work (e.g. Otkin et al. 2013) that has shown that the USDM tends to respond too 335 

slowly to rapidly changing conditions.  Both datasets indicate that extreme drought had 336 

developed within regions characterized by especially large rainfall deficits along the mid-337 

Mississippi River valley.  The VegDRI anomalies have also decreased within this region, 338 

but remain too small compared to the other datasets.  VegDRI performance is better in 339 

the western U.S. where it depicts widespread severe drought conditions. 340 

 After enduring the hottest July on record and receiving below normal rainfall 341 

(Diffenbaugh and Sherer 2013), extreme to exceptional drought conditions (D3-D4 in the 342 

USDM) encompassed most of the central U.S. by the beginning of August (Fig. 2).  343 

According to the USDM, more than 80% of the U.S. was characterized by at least 344 

abnormally dry conditions at the peak of the drought on 24 July (not shown).  Many 345 

locations had experienced flash drought during the previous two months as conditions 346 

rapidly transitioned from being drought free to the two worst (D3 and D4) drought 347 

categories in the USDM.  Very large negative NMV_AVE and ESI_4WK anomalies 348 

were present within the core drought regions characterized by the largest SPI_8WK 349 

anomalies.  The spatial extent and magnitude of these anomalies are consistent with the 350 

very poor crop conditions present across most of the central U.S.  Though the VegDRI 351 

anomalies had also decreased across this part of the country, their magnitude was still 352 

much smaller than the other drought indicators. 353 
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 354 

 Several episodes of beneficial rainfall during August led to some improvements to 355 

the drought depiction by 01 September along the eastern periphery of the core drought 356 

region from Arkansas to Michigan.  The wetter conditions in the east combined with the 357 

continuation of hot, dry weather in the west led to a westward shift of the core drought 358 

region to the central High Plains.  Although the NASS topsoil moisture conditions had 359 

improved slightly within the eastern Corn Belt, the crops were so badly damaged by this 360 
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time that only minor gains are evident in the crop condition and ESI_4WK datasets.  The 361 

VegDRI anomalies accurately captured the spatial extent of the severe drought conditions 362 

from the Rocky Mountains eastward to the Mississippi River valley.  Further to the west, 363 

unusually heavy rainfall across the Desert Southwest led to very large positive ESI_4WK 364 

anomalies indicative of much higher than normal ET rates.  Some improvements were 365 

also evident in the VegDRI data and to a lesser extent in the NMV_AVE topsoil moisture 366 

anomalies.  The USDM drought depiction improved by one category in most places, but 367 

remained high to reflect the impact of long-term dryness across the region. 368 

 By 29 September, very dry conditions had developed from the Pacific Northwest 369 

to the Upper Midwest, with SPI_8WK anomalies < -2 in many locations.  These large 370 

rainfall departures combined with warmer than average temperatures led to a northward 371 

expansion of drought conditions into the north central U.S. and further intensification of 372 

the extreme drought over the central High Plains.  The worsening drought conditions are 373 

evidenced by the increased spatial extent of large negative anomalies in the ESI_4WK, 374 

NMV_AVE, and VegDRI datasets across the north central U.S. and a concurrent increase 375 

in large negative NASS topsoil moisture and crop condition anomalies across this region. 376 

 Finally, by the end of October, the core drought area had become entrenched over 377 

the central High Plains from the Texas panhandle northward to western South Dakota.  378 

Very dry conditions are evident in each dataset across this part of the country.  Continued 379 

wet weather across the eastern U.S., however, led to further improvements to the USDM 380 

drought depiction along the Mississippi River valley.  The ESI_4WK anomalies capture 381 

the improving conditions in the eastern U.S. as indicated by the return to normal or above 382 
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normal crop condition and soil moisture anomalies in the NASS datasets.  Though not as 383 

large, improvements were also evident in the VegDRI and NMV_AVE datasets. 384 

 385 

3.2. Regional drought analysis 386 

 In this section, the drought evolution will be examined more closely for locations 387 

that experienced severe drought conditions during different parts of the growing season 388 

and are characterized by different climate regimes and agricultural interests.  Unlike the 389 

previous section, anomaly time series will be shown at weekly intervals for each variable 390 

and will be assessed separately for each crop type and NLDAS model, and for anomalies 391 

computed over different time periods.  The data will be displayed using a visualization 392 

method developed in prior studies (e.g. Otkin et al. 2013) as shown in Fig. 3.  The USDM 393 

is displayed in the first column, with weekly rainfall totals and 1-wk anomalies in surface 394 

temperature, dew point depression, and wind speed shown in the next three columns.  SPI 395 

values for 4- and 12-wk periods are shown next, followed by anomalies in the NASS 396 

topsoil moisture, subsoil moisture, range, corn, soybeans, and winter wheat conditions.  397 

After that, anomalies are shown for VegDRI and for the ESI computed over 2-, 4-, 8-, 398 

and 12-wk periods.  The last sixteen columns show anomalies in topsoil and total column 399 

soil moisture content computed over 2- and 4-wk periods for the Noah, Mosaic, and VIC 400 

models and also for their ensemble mean. 401 

 402 

3.2.1. West-central Missouri 403 

 Figure 3 shows weekly values for each variable averaged using all grid points in 404 

west-central Missouri (CPC climate division 3).  At the beginning of March, abnormally 405 
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dry conditions were present across the region as signified by negative anomalies in most 406 

datasets.  This dryness was partially alleviated by several heavy rainfall events from the 407 

end of March to the first week of May that led to large positive SPI and ESI anomalies at 408 

all time scales.  The positive ESI anomalies indicate that the ET had greatly increased in 409 

response to the heavy rainfall and warm temperatures, which is consistent with the above 410 

average range and winter wheat conditions in the NASS dataset.  Though improvements 411 

were also evident in the VegDRI and NLDAS datasets, these changes were modest and 412 

most of the anomalies remained negative even though short-term conditions had 413 

improved. 414 

 After receiving beneficial rainfall during the spring, very dry weather returned to 415 

the region during May and coincided with a prolonged hot and windy spell that caused 416 

soil moisture and crop conditions to rapidly deteriorate.  Temporal changes in the short-417 

range ESI anomalies (2-8 weeks) were exceptionally large at the beginning of the flash 418 

drought event and closely mirrored the observed crop condition changes.  The VegDRI 419 

and 12-wk ESI anomalies also decreased, but at a slower rate than the shorter-range ESI 420 

anomalies.  Each of the NLDAS models also exhibited rapid decreases in soil moisture at 421 

the end of May that were consistent with changes in the NASS soil moisture dataset and 422 

preceded their appearance in the ESI by one week.  These changes first appeared in the 423 

TS moisture and shorter 2-wk composites before appearing in the TC and 4-wk soil 424 

moisture anomalies.  As drought conditions intensified during the summer, most of the 425 

drought indicators continued to deteriorate except for the VIC soil moisture anomalies, 426 

which were more sensitive to small rainfall events.  The USDM drought severity lagged 427 

the other drought metrics by several weeks during the entire event. 428 
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 429 

 Heavy rainfall at the beginning of September led to rapid improvements in the TS 430 

and TC moisture in all of the NLDAS models and the reappearance of positive 4-wk SPI 431 

values.  The ESI anomalies, however, remained at or near their lowest values for the year, 432 
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and did not exhibit substantial improvements until several weeks later.  This behavior 433 

indicates that the vegetation was initially dormant or so badly damaged that it could not 434 

immediately respond to the improving conditions.  It took a prolonged period of cool, wet 435 

conditions before the vegetation could recover enough to transpire at higher than normal 436 

rates during October.  The initial lack of improvement in the ESI is consistent with trends 437 

in the NASS crop condition datasets.  The 2-category improvement in the USDM at the 438 

beginning of September was more representative of the above normal rainfall than it was 439 

of improving vegetation conditions.  The VegDRI anomalies reached their lowest values 440 

during the peak of the drought at the end of August and then slowly recovered during the 441 

fall.  Consistent with its use of long-term climate variables, its evolution more closely 442 

matched the NLDAS ensemble model average TC soil moisture anomalies during the 443 

drought event; however, differences were larger with respect to the individual models. 444 

 445 

3.2.2. South-central Wisconsin 446 

 This section describes the evolution of the drought over south-central Wisconsin 447 

(CPC climate division 8).  Inspection of Fig. 4 shows that record warmth during March 448 

led to negative anomalies in most datasets despite the slightly above normal rainfall.  The 449 

spread in the NLDAS soil moisture anomalies was very large at this time.  TS moisture 450 

anomalies were positive in the VIC model, but negative in the Noah and Mosaic models, 451 

whereas the TC moisture anomalies were positive in the Noah model but negative in the 452 

other models.  Large model differences are also evident later in the spring during a period 453 

of moderate rainfall that greatly improved TS moisture conditions, especially in the Noah 454 

and VIC models, but led to only minor improvements in the TC soil moisture.  The short-455 
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range ESI anomalies became slightly positive during May in response to the improved TS 456 

moisture conditions.  The negative VegDRI anomalies present at the beginning of March 457 

continued to increase during the spring due to long-term dryness across the region. 458 

 459 

 Extreme weather conditions characterized by well below normal rainfall, record 460 

high temperatures, large dew point depressions, and unusually strong winds developed 461 

across the region during June and the first half of July.  Vegetation conditions as indicted 462 

by the ESI and NASS datasets rapidly deteriorated during this time period because of the 463 

increased evaporative demand and the already short soil moisture conditions.  Pasture and 464 
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range conditions were the first to deteriorate, followed in subsequent weeks by decreases 465 

in corn and soybean conditions.  Almost all of the satellite and model-based drought 466 

indicators depicted extreme drought conditions by the beginning of July.  Though the 467 

USDM drought severity increased an impressive four categories in four weeks during this 468 

flash drought, its period of rapid intensification was delayed by up to 4 weeks compared 469 

to the other datasets, especially those computed over 2- and 4-wk time periods.  The 470 

earlier onset of the large negative anomalies in the ESI and modeled soil moisture 471 

datasets, however, is consistent with the large negative anomalies in the NASS datasets. 472 

 Heavy rainfall during the last two weeks of July allowed conditions to improve 473 

slightly, with the 4-wk SPI returning to normal.  Large differences are again evident in 474 

the NLDAS datasets, with the VIC model showing much larger improvements, especially 475 

in TS moisture, that lasted throughout the late summer and fall recovery period.  Given 476 

that each of these models had similar anomalies preceding the first rainfall, their different 477 

responses are likely due to differences in their infiltration and runoff rates.  Compared to 478 

the NASS TS moisture dataset, the VIC model is likely too wet, whereas the Noah and 479 

Mosaic models are too dry.  The VegDRI anomalies became very large in July and then 480 

remained strongly negative during the rest of the growing season even as conditions were 481 

slowly improving in the other datasets.  The delayed VegDRI response was likely due to 482 

its use of the 36-wk SPI because this variable remained strongly negative during this time 483 

period.  The ESI anomalies displayed different behavior depending on the composite 484 

period length, with the short-term composites showing minor improvements after the first 485 

rainfall, whereas the long-range composites did not improve until September.  Overall, 486 

changes in corn conditions were closely related to the long-range (8- and 12-wk) ESI 487 
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anomalies, whereas the soybean conditions tracked changes in the shorter 2- and 4-wk 488 

anomalies.  This behavior is consistent with prior work by Peng et al. (2014) using other 489 

vegetation indices. 490 

 491 

3.2.3. Northwestern Kansas 492 

 The evolution of the drought conditions over northwestern Kansas (CPC climate 493 

division 1) is shown in Fig. 5.  At the beginning of March, most datasets indicated near to 494 

slightly drier than normal conditions.  Beneficial rainfall starting at the end of March led 495 

to positive SPI anomalies and above normal soil moisture and crop conditions according 496 

to the NASS datasets.  Though there are some differences in magnitude, the evolution of 497 

the modeled TS and TC moisture anomalies are similar in each NLDAS model.  The ESI 498 

anomalies remained negative longer than the other datasets during the first part of April 499 

presumably because the vegetation had not yet emerged or was still too small to take full 500 

advantage of the increased soil moisture content.  The VegDRI anomalies were near zero 501 

initially before slowly increasing as spring transitioned into summer. 502 

 Drought conditions began to rapidly intensify during May and June in response to 503 

a prolonged period of hot, windy, and dry weather that quickly depleted the TS moisture 504 

according to the NASS dataset and each of the NLDAS models.  Rapid decreases initially 505 

occurred in the NLDAS TS anomalies before becoming evident in the ESI anomalies two 506 

weeks later and the VegDRI dataset after that.  Periodic small rainfall events starting in 507 

July led to minor improvements in the 2- and 4-wk ESI composites and the NLDAS TS 508 

moisture anomalies; however, the longer-range ESI composites and NLDAS TC moisture 509 

anomalies continued to decrease during the summer as long-term rainfall deficits 510 
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continued to accumulate.  The negative soil moisture anomalies were largest for the Noah 511 

model and smallest for the VIC model, similar to the results described in previous 512 

sections.  The VegDRI anomalies continued to become more negative during the fall and 513 

corresponded well with changes in the NLDAS modeled TC moisture content. 514 

 515 

 516 

3.3. Crop yield analysis 517 

 In this section, we assess the impact of the severe flash drought conditions on the 518 

end-of-season yield for major agricultural crops grown across the central U.S.  Figure 6 519 
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shows the trend-adjusted yield departures for corn, soybeans, winter wheat, and spring 520 

wheat during 2012, along with ESI_4WK, NMV_AVE TC soil moisture, VegDRI, and 521 

SPI_8WK anomalies during critical times for yield production in each crop.  The yield 522 

departures are expressed as percentages above and below the 2000-2014 yield trend for 523 

each county to account for local differences in average crop yield and yield trends. 524 

 525 

 Overall, it is evident that winter wheat yields were well above average across the 526 

primary wheat-growing areas in the south-central U.S., most notably in parts of western 527 

Oklahoma and eastern Kansas where yields were 50% higher than normal.  Wheat yields 528 
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were high in this part of the country because the warm and wet conditions during spring 529 

provided ideal growing conditions that allowed the crop to mature before severe drought 530 

conditions developed by mid-summer.  Areas further to the west and north remained in 531 

drought during the spring and early summer; thus, their yields tended to be below normal.  532 

Spring wheat yields over the northern Plains were below normal over South Dakota and 533 

Montana in areas affected by drought; however, they were slightly above normal over 534 

North Dakota where conditions were more favorable. 535 

One of the most critical periods for wheat yield production occurs between the 536 

booting and soft dough stages during late spring for winter wheat and early summer for 537 

spring wheat (Hanks and Rasmussen 1982).  Overall, for winter wheat, there is a strong 538 

relationship between above average yield over Oklahoma and southeastern Kansas and 539 

positive ESI anomalies on 12 May, with negative ESI anomalies over the High Plains and 540 

the eastern Corn Belt where yields were below average.  For spring wheat, the ESI also 541 

contains large negative anomalies in regions with below average yield, such as over most 542 

of Montana and western South Dakota.  A strong correspondence also exists between the 543 

VegDRI anomalies and wheat yield departures across most of the central U.S.  The 544 

NMV_AVE anomalies, however, exhibit a weaker relationship to the final yield for both 545 

crops.  For example, the NMV_AVE anomalies are mostly negative across the southern 546 

Plains on 12 May where winter wheat yields were well above average but were mostly 547 

positive across Montana on 16 June where spring wheat yields were below normal. 548 

 The extreme drought conditions had a much larger impact on corn and soybean 549 

yields across the Midwest.  Corn yields were below normal across most of the Corn Belt, 550 

with less than half of normal yield observed in the region extending from South Dakota 551 
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southeastward across Missouri and the lower Ohio River valley.  Soybean yields were 552 

also below normal in most locations, especially across the western Corn Belt and central 553 

Plains where yields were at least 25% below the long-term trend.  The different locations 554 

of the largest corn and soybean yield losses are consistent with the evolution of the most 555 

severe drought conditions during the growing season.  For example, the largest corn yield 556 

reductions occurred where excessive heat in July combined with the largest precipitation 557 

deficits.  July is the most important month for determining corn yield because excessive 558 

heat during that month can significantly decrease pollination efficiency during the critical 559 

silking and tasseling stages (Lobell et al. 2013; Shafiie-Jood et al. 2014).  For soybeans, 560 

however, the most important development stages occur during the second half of summer 561 

when soybean pods develop and the seeds still have time to increase in size if the plants 562 

receive adequate rainfall.  This meant that soybean yield losses were less severe east of 563 

the Mississippi River because of heavy rainfall during August and September, but were 564 

larger to the west as the core drought region shifted westward during the summer. 565 

 Comparison of the drought indices on 21 July reveals that the spatial pattern in the 566 

ESI anomalies most accurately corresponds to the observed corn yield departures across 567 

most of the Corn Belt, including the much below average yield from Missouri to southern 568 

Indiana and the above average yield over Minnesota and North Dakota.  The NMV_AVE 569 

anomalies were also strongly negative across the central and eastern Corn Belt; however, 570 

the large anomalies extended too far to the north into areas that actually had near to above 571 

average corn yields.  Though VegDRI also exhibits negative anomalies in most locations, 572 

its correspondence to the final corn yield is much weaker than the other datasets because 573 

of its slow response to the rapidly changing conditions experienced during this drought.  574 
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Its performance improved for soybeans, with negative anomalies and a spatial pattern that 575 

more closely matches those depicted by the SPI_8WK, ESI and NMV_AVE datasets 576 

during the bean filling stage (e.g., 01 September). 577 

 To further assess relationships between the various drought indices and the 2012 578 

crop yields, correlations were computed between the county-level trend-adjusted crop 579 

yield departures and the ESI_4WK, SPI_8WK, VEGDRI, and NMV_AVE TC anomalies 580 

at weekly intervals during the growing season (Fig. 7).  The drought monitoring datasets 581 

for a given week were averaged to the individual county level prior to computing the 582 

correlations.  Table 1 provides a list of the states used to compute the correlations for 583 

each crop.  The correlations typically increase for each crop as the growing season 584 

progresses and reach peak values near critical stages of yield development (shaded areas 585 

in Fig. 7).  For most crops, the ESI_4WK data exhibited the strongest correlations to 586 

yield anomalies during these critical stages, most notably for corn and wheat.  Given the 587 

importance of rainfall for yield production, the SPI_8WK correlations were also strong, 588 

but were weaker than those computed using the ESI_4WK data except for soybeans.  The 589 

stronger correlations exhibited by the ESI_4WK variable demonstrates that although 590 

rainfall departures are important for yield production, it is also necessary to consider 591 

other drivers of drought such as hot temperatures when assessing agricultural drought 592 

severity and potential impact on yield.  Correlations with VEGDRI were generally 593 

weaker than the other variables during the spring and early summer due to its slow 594 

response to the rapidly changing conditions, but increased as drought conditions became 595 

entrenched across the region, with its maximum correlations obtained near the end of the 596 

growing season.  Finally, although the NMV_AVE correlations were relatively strong for 597 
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corn, they were weaker for the other crops and were even negative for spring wheat.  598 

Further research is necessary to determine why the modeled soil moisture anomalies had 599 

such a weak relationship to crop yields during this extreme flash drought event. 600 

 601 

 602 

 603 

 604 

 605 

 606 
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Table 1.  States used to compute the yield correlations for winter wheat, spring wheat, 607 

corn, and soybeans.  The correlations were computed using all counties within these 608 

states that reported crop yields during 2012. 609 

Crop States 

Winter Wheat 
Colorado, Illinois, Indiana, Kansas, Kentucky, Michigan, Missouri, 
Montana, Nebraska, North Dakota, Ohio, Oklahoma, South Dakota, 
Tennessee, Texas, and Wisconsin 

Spring Wheat Minnesota, Montana, North Dakota, and South Dakota 

Corn 
Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, 
Missouri, Nebraska, North Dakota, Ohio, South Dakota, and 
Wisconsin 

Soybeans 
Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, 
Missouri, Nebraska, North Dakota, Ohio, South Dakota, and 
Wisconsin 

 610 

4. Conclusions and Discussion 611 

 This study examined the evolution of several drought indicators sensitive to soil 612 

moisture and vegetation conditions during the extreme flash drought event that impacted 613 

most of the U.S., including some of the world’s most productive farmland, during 2012.  614 

The evolution of two satellite-based drought indicators, the ESI and VegDRI, was 615 

compared to modeled soil moisture anomalies from NLDAS and to observed soil 616 

moisture and crop conditions compiled by the USDA NASS.  The modeled soil moisture 617 

anomalies were assessed separately for the Noah, Mosaic, and VIC models in the 618 

NLDAS system, and also for their ensemble mean.  The response of each of these 619 

datasets was compared to observed meteorological conditions and assessed at both 620 

national and regional scales. 621 

 Overall, the results showed that rapid temporal changes in the NLDAS and ESI 622 

datasets often preceded periods of rapid drought intensification in the USDM.  In most 623 

locations, dry conditions initially appeared in the NLDAS TS moisture anomalies before 624 
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appearing in the ESI and NLDAS TC soil moisture anomalies in subsequent weeks.  This 625 

sequence occurs because except for early in the growing season when root depths are still 626 

shallow, vegetation will be able to access soil moisture over more than just the top 10 cm 627 

of the column, which means that ET can remain high even as the TS moisture decreases.  628 

For agricultural drought detection, however, the heightened sensitivity of the TS moisture 629 

to rainfall can lead to false alarms when dry spells are short-lived.  Thus, when assessing 630 

agricultural drought severity, it is advantageous to use drought indices that are sensitive 631 

to vegetation, yet able to respond quickly to changing conditions.  Decreases in the short-632 

range (2- and 4-wk) ESI anomalies preceded observed changes in crop conditions by up 633 

to one month in the regional analyses, which is consistent with prior studies by Otkin et 634 

al. (2013, 2014).  The NLDAS anomalies were typically similar to concurrent anomalies 635 

in the NASS TS and subsoil moisture datasets.  The VegDRI anomalies were most 636 

similar to the TC soil moisture anomalies because that method uses longer-term climate 637 

indicators in addition to remotely sensed vegetation health estimates to assess drought 638 

severity.  VegDRI anomalies tended to match the evolution of the USDM in regions with 639 

slow drought development, but lagged the USDM and other drought indicators when 640 

conditions were changing rapidly, making it less suitable as a flash drought early warning 641 

tool.  For early warning during rapid onset drought events, it is important to use drought 642 

metrics that are able to capture rapid changes in precipitation, soil moisture, and 643 

vegetation conditions. 644 

 Comparison of the NLDAS soil moisture anomalies revealed large differences in 645 

behavior for each of the models assessed during this study.  The Noah model consistently 646 

depicted the largest soil moisture anomalies, whereas moisture deficits in the VIC model 647 
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were often less severe because of its greater sensitivity to small rainfall events.  In many 648 

situations, the larger improvements depicted by the VIC model were reasonable based on 649 

changes in the NASS soil moisture datasets; however, sometimes these improvements 650 

were too large.  More detailed process studies are necessary to identify the reasons for the 651 

model differences and to determine if they also occur during less extreme drought events. 652 

 A detailed assessment of the NASS crop conditions for three regions revealed that 653 

range conditions were typically the first to deteriorate as drought severity increased 654 

followed thereafter by decreases in corn and soybean conditions.  Comparison to the ESI 655 

anomalies showed that soybean conditions were most similar to the short-range (2 and 4 656 

week) ESI composites, whereas corn conditions more closely followed changes in the 657 

longer 8- and 12-wk ESI anomalies.  This behavior suggests that crop-specific drought 658 

indices could be developed using ESI anomalies computed over different time periods 659 

that are optimized to depict conditions experienced by each crop.  More research is 660 

required to assess this possibility. 661 

Crop yield departures were also assessed using county-level yield data.  Winter 662 

wheat yields were generally above average because that crop matured before the most 663 

severe drought conditions developed; however, significant yield losses occurred for both 664 

corn and soybeans.  Corn yield losses were largest across those regions that experienced 665 

both extreme heat and dry weather during the pollination stage in July.  Soybean losses 666 

were largest across the western Corn Belt because of the extreme drought conditions that 667 

developed there during the second half of summer when seed growth occurs.  These yield 668 

losses were consistent with the drought severity depicted by the ESI and SPI and to a 669 
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lesser extent by the NLDAS and VegDRI datasets.  These results demonstrate the utility 670 

of county-level crop information for ground truth assessment of drought indices. 671 
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